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lNtroauction

Polarization VS. Alignment
Polarization describes the spin of a particle Alignment describes the spin of a particle
pointing in mostly one direction pointing along an axis
l.e. magnetic substates are lopsided. l.e. magnetic substates are symmetric.
B=7T \
| \ |

Normalized magnetic sub-state
populations given from

PRC 91 024610 (2015)

Beam-AxIs

Normalized magnetic sub-state populations for
TLi*(J*= 7/2°) in B,=7T at 20 mK '



lNntroduction

Alignment of nuclear states is useful for g-factor
measurements.

Alignment of molecular states allows for the production
of highly polarized hydrogen targets.

In compound, quasi-elastic, and deep inelastic reactions
large alignment fransverse to the beam-axis is common.

 Can be used for fragment spin determination

Large alignments are also seen in relativistic Coulomb
excitation.



INntrogduction
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EXperiment

« \We studied three ‘Li reactions at 24 MeV/A at TAMU:

"Li(J™ =3/27) +Be/C/Al — "Li*(J™ = 7/27) + Be/C/Al (all remaining in GS)

Invariant Mass 2-body kinematics

« We found a large spin alignment (A = 0.49) of ‘Li* longitudinal to
the beam axis for all three targets.

* [argest reported longitudinal alignment generated from nuclear
reactions.

 This is not relativistic Coulomb excitation.

e 24 MeV/A ‘Liis only slightly relativistic.

 We only used low Z targets.



EXperiment
@(J“=1/2+)

Decay fragments carry
orbital A.M depending
on fragments’ total spin
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How do we measure projectile
fragments (a+t)7

CsI(TI)
o We used two annular Si-Csl(Tl) telescopes, N
one looking through the hole of the other =
e These allow us measure E, p, and Particle ID
of the proje
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Setup at TAMU MARS line




Ex [MeV]

7Li Level Scheme

T Erotenon 1o e, 7 We reconstruct events by
8t\ Reconstruction 1 adding momentum back
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Cluster Model

We treat 7Li as a “cluster” of an a and

SH orbiting each other with angular
momentum, ¢, with projection, u.

We describe the g.s. (J™ = 3/2-) with { =

¢ =1 and the triton spin Dara//e/ to the
Internal angular momentum.
The 1st excited state (J" = 1/2-) has Q

¢ =1 with the triton spin anti- Dara//e/

The 2nd excited state (J™ = 7/2-) has
¢ = 3 with the triton spin parallel.

The 3 excited state (J™= 5/2-) has
¢ = 3 with the triton spin anti-parallel




7Li Level Scheme
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How do we determine spin alignment?
®
(2

%,y plane * Decay of 7/2- state has ¢final =
‘ ) Quantization Axis 3 (a+t internal A.M.)
z - - = = peam AXIS

* It A.M. is perpendicular to

@ the beam-axis fragments of
decay will be preterentially
g ® emitted in a plane containing
X the beam axis (y = Q°).
(L L T
’ ? . If A.Mis parallel to the beam-
@ L (R axis fragments of decay will

A be preferentially emitted in
| the x-y plane (y = 90°).

 Beam Axis
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Magnetic Substate
Extraction

For the rest of the talk I'll focus on the
reaction with 12C.

We fit the angular correlations to
Legendre Polynomials to extract the
magnetic sub-state.

The weights of the Legendre
Polynomials are related to the population
of the magnetic substate.

Extracted magnetic sub-states indicate
large longitudinal alignment.
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Angular Momentum &
Excitation Energy Matching
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Angular Momentum &
Excitation Energy Matching
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Allgnment Mechanism

e We looked at the transfer, or T, matrix of

the projectie. TE oy o S0 (o3 1/2,m) Ty m)
i f s Ms
 The squared elements of the T-Matrix give _
the probability of going from an initial to X (Lps g5 1/2,msl Iy my)
final state. The projection onto ms gives a Cr v K o\l (o
predicted m-state distribution. Internal —x /Y_Nf (7)Y a1 (T)YM (7)dS2

L (D\WEK/P\WVL/T
+ The last two integrations are directly ~ =Xternal —>x /Y—M(R)YM (R)Yy (R)dQ2g,
proportional to Clebsch-Gordan AM. & E* matching = Lin = Lo

Coefficients.
J=10+1/2

M=Ap=Am=m;—my
K = 2 (from parity)




Allgnment Mechanism

We looked at the transfer, or T, matrix of
the projectile.

TE ox (Jy,m;; K, M | Jp,my)

| | mq,myf
The squared elements of the T-Matrix give X (L, 0; K,M ’ L, M> '

the probability of going from an initial to
final state. The projection onto ms gives a
predicted m-state distribution.

The last two integrations are directly
proportional to Clebsch-Gordan
Coefficients.

J=0+1/2

M=Ap=Am=m;—my
K = 2 (from parity)




Allgnment Mechanism

@ ~— — — () v \
R A I\ \ Multiplying together
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2 2 52 -3/2 12 12 3/ 52 72
Ms

ms
(3/2,m; ; 2,M | 7/2,m¢)* (35,0; 2, M |35, M) FRESCO

M = +1 Is completely suppressed



Allgnment Mechanism
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L -Wave Mixing = Alignment

Single J FRESCO Calculatlons +4 J FRESCO calculations
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Characterizing the Reaction

op =X Y (2L+1)(1 —[S.|?)
L=0

’Li +12C with 24 MeV/A "L
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Conclusions

Uncovered alignment mechanism that was buried in
standard scattering theory.

Alignment arises from an angular-momentum-excitation-
energy mismatch.

Many L-waves intertere resulting in the alignment being
a smooth function of scattering angle for large angles.

Alignment mechanism is independent of the scattering
potential used.

* Could be found in many scattering experiments.



Partial-Wave Analysis

Separate variables in the Hamiltonian and focus on radial part,

—h? d? | R°L(L+1)
om dr?2 2mr?

= v<r>] b(r) = By(r)

Using the Bohr approximation we treat the incoming particle as a plane-wave,
wkm (I‘) — e—ikz

We can then do a plane-wave expansion giving us,

o0

i, (r) = %% =N (2L + 1)i"ji (kr)Pp(cos 6)
L=0

Where, jr(kr), is a spherical Bessel function.



Partial-Wave Analysis

Now we make the ansatz for the full outgoing wavetunction,
—ikr
Vi (1) = €75 + £1.(6)

e
Where, fr(0), is called the “scattering amplitude”. The differential cross section
s related to the scattering amplitude by,

T

do

ey 2
70 S (0)]
And with some algebra we have,
1 — .
fr(0) = . LEZ:O(ZL + 1)e®L sin(67,) Pr(cos 6)

where 0y, is called the “phase-shift” and is dependent on the scattering
potential used (draw diagram).



