A Radio-Frequency Fragment Separator (RFFS) for FRIB

Daniel E.M. Hoff

University of Massachusetts Lowell APS April Meeting — 04/15/2019

Learning with Purpose

- Capabilities of current RFFS at NSCL •
- Experiments enabled by current RFFS •
 - First observation of ¹¹O
 - ⁷³Sr β -delayed proton emission
- Capabilities of proposed RFFS at FRIB •
- Day 1 experiments at FRIB with new RFFS •
 - ³⁴Ca 2p decay
 - ⁷²Rb decay studies
 - ¹⁰⁰Sn decay studies

Outline

Length(m)	Gap(cm)	Peak Voltage(kV)	Frequency(MHz)	Q
2.26	18	150	20.125	12,90

Length (m)	Gap (cm)	Peak voltage (kV)	Frequency (MHz)	Q
1.5	5	100	19–27	7500–10,000

D. Bazin et al., NIM A **606** (2009)

Daniel E.M. Hoff — APS April Meeting — 04/15/2019

RFFS at **NSCL**

- RF Cavity tuned to around 20 MHz.
- Phase of RF is optimized to deflect ion of interest • maximally.
- Other ions are blocked by slits, resulting in • purification of beam.
- Greatly purifies proton-rich beam cocktails, • enabling experiments along the proton dripline.

First Observation of ¹¹O

High Resolution Array (HiRA)

- ¹¹O was first observed by ⁹C+2p events in HiRA.
- only had 10% of ¹³O.

Daniel E.M. Hoff — APS April Meeting — 04/15/2019

fragmenting a ¹³O secondary beam on a Be target, looking for

After A1900 secondary beam

After passing through RFFS 80% of beam consisted of ¹³O!

T.B. Webb et al., Phys. Rev. Lett. **122** (2019)

First Observation of 110

- Current RFFS has already been used to study nuclei that would contaminates.
- watching beta-decay of ⁷³Sr secondary beam implanted into a DSSD. Beam was purified by a factor of 4500 down to 10 pps!

Daniel E.M. Hoff — APS April Meeting — 04/15/2019

⁷³Sr β -delayed proton emission

⁷³Sr β -delayed proton emission

⁷³Sr β -delayed proton emission

RFSS at **FRIB**

- Operating at 80 MHz of FRIB would result in "wrap around" of certain isotopes.
- Subharmonic bunching of 20.125 MHz will be lacksquareimplemented at FRIB upon funded construction of RFFS.

Cavity design has been investigated with E&M simulations performed by Alexander Plastun

Electrodes (plates)	Width	26
	Length	226
	Gap	18
	Field gradient	17
	Voltage	± 153
	Peak surface field	46
	$\int_{-\infty}^{\infty} E_{y}(z) dz$	4
Coaxial line of QWR	Inner diameter of the tank	80
	Outer diameter of the stem	1631
	Height	138
Chamber inner dimensions	Length	246
	Diameter	56
RF parameters	Frequency	20.125
	RF power consumption	2 × 21
	Quality factor	12,900
Beam kick at the exit	Positional	±1.3
	Angular	±8.6

- Larger gap to have large momentum acceptance of RIB's.
- Large gap requires larger resonators.

RFSS at **FRIB**

Invariant Mass Spectroscopy of ³⁴Ca

- One nucleon knockout of secondary ³⁵Ca beam, from 40Ca primary beam.
- ~1.5% of beam would be ${}^{35}Ca$ without kicker
- ~95% of secondary beam would be ³⁵Ca after RFFS
- ${}^{34}Ca \rightarrow {}^{32}Ar + 2p$ channel can be measured with upgraded HiRA (10 cm long CsI(TI)'s) + **S800**

Decay studies of 72Rb

Daniel E.M. Hoff — APS April Meeting — 04/15/2019

Learning with Purpose

- Observed ⁷²Rb in ⁷³Sr run... but too few statistics to extract observables.
- One could run same similar experiment with A1900 focused on ⁷²Rb.
- With FRIB beam rates, would obtain same number of statistics from weeklong ⁷³Sr run in a matter of hours!

Decay studies of 72Rb

200 MeV/u 92Mo primary beam fragmented on thick Be target with thick Al wedge

Decay studies of 100Sn

- Previous experiments only measured β decay properties.
- To understand shell structure, need to populate higher lying states.
- Higher lying states can be populated by nucleon knockout reactions \rightarrow **Use** ¹⁰²Sn secondary beam!
- Could even do experiments at the endpoint region of the rp-process.

dE (MeV)

Daniel E.M. Hoff — APS April Meeting — 04/15/2019

Learning with Purpose

Outlook

- Preliminary designs for new RFFS already done.
- Many Day 1 FRIB experiments could use new proposed RFSS.
- Outlook looks good!

